

Installation Guide EV Power Chargers 3kW HE

Traction Battery Charger Modules ~ IP67

always on

Electric Vehicle Power Chargers Range

350015.033

Information in this document is subject to change without notice and does not represent a commitment on the part of *Eltek Valere*.

No part of this document may be reproduced or transmitted in any form or by any means — electronic or mechanical, including photocopying and recording — for any purpose without the explicit written permission of *Eltek Valere*.

Copyright ©: Eltek Valere, 2010

Safety Precautions

- ☑ The equipment represents an **energy hazard** and failure to observe this could cause terminal injury and invalidate our warranty
- ☑ There are hazardous voltages inside the power charger. As they incorporate large charged capacitors, it is dangerous to open the modules even if the mains supply is disconnected.
- Products into which our components are incorporated have to **comply with a number of requirements**. Installation is to be in accordance with the recommendations herein
- Please read the manual carefully before using the equipment

This booklet describes following modules:

Part no.	Description
241121.110	EV Power Charger 110/3000 HE IP67 G2
241121.120	EV Power Charger 220/3000 HE IP67 G2
241121.130	EV Power Charger 360/3000 HE IP67 G2

350015.033 Issue 1.1, 2010 Nov

Published 2010-11-04

Mafe

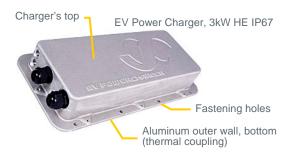
Table of Contents

1. Installation EV Power Chargers 3kW H	<i>IE, IP67</i> 4
Safety Precautions	4
Mechanical Installation	
1. Prepare the Cold-Plate	
2. Position and Fasten the Battery Charger	
Electrical Installation	
CAN Bus Communication	
Firmware Upgrade of the Battery Charger	8
2. Technical Specifications	9
Specifications EV Power Chargers 3kW HE, IP67	9
Ordering Information	
Reference Documents	

1.Installation EV Power Chargers 3kW HE, IP67

Safety Precautions

Get acquainted with the satety precautions on page 2, before installing or handling the equipment.



CAUTION: The battery chargers may be warm, but do not hand-carry them by the Terminal wires.

CAUTION: Double Pole / Neutral Fusing. There is a Mains fuse in each line.

Mechanical Installation

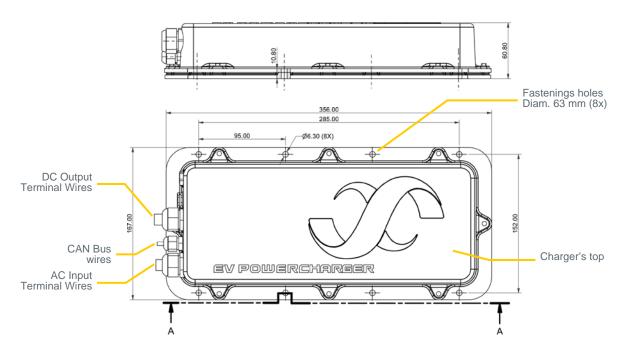
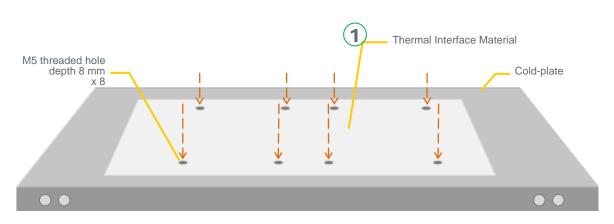
The *EV Power Chargers 3kW HE*, *IP67* are designed in a very compact box measuring 61x356x167 mm, and can be mounted in installation sites requiring IP67 rating.

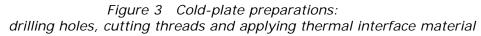
The charger's mechanical design implements thermal coupling, by mounting all internal major heat generating components against a solid aluminum outer wall.

The *EV Power Chargers 3kW HE*, *IP67* must be fastened with this solid aluminum outer wall against a cold-plate, which is either water cooled or has sufficient heat transfer capacity to comply with the environmental specification of the installation site.

Figure 1 Aluminum outer wall, bottom, in EV Power Chargers 3kW HE, IP67

WARNING: The cold-plate must have a **heat transfer capacity of minimum 220W**, keeping the charger at a lower temperature than **60°C** (output power derating level).


Figure 2 Mounting screws and dimensions for the EV Power Chargers 3kW HE, IP67

1. Prepare the Cold-Plate

The *EV Power Chargers 3kW HE*, *IP67* must be mounted on a cold-plate, which is either water cooled or has sufficient heat transfer capacity to comply with the environmental specification of the installation site.

Prepare the cold-plate for mounting the charger, as follows:

Col	d-Plate Preparation Procedure — Steps	Action	OK
1.	Clean the surface and apply a thermal interface material	Thoroughly clean the cold-plate's holes and the surface using rubbing alcohol (isopropyl alcohol) or pure acetone	
		Apply a thin Thermal Interface Material (TIM) to the surface	
	Warnings: — The TIM should be a thermally conductive foil, for instance HALA TFO-X300-SI or similar, with 3 W/mK heat conductivity or better		

2. Position and Fasten the Battery Charger

After preparing the cold-plate and the *EV Power Charger 3kW HE*, *IP67* for installation, fasten the charger to the cold-plate with the 8 screws(D), as follows:

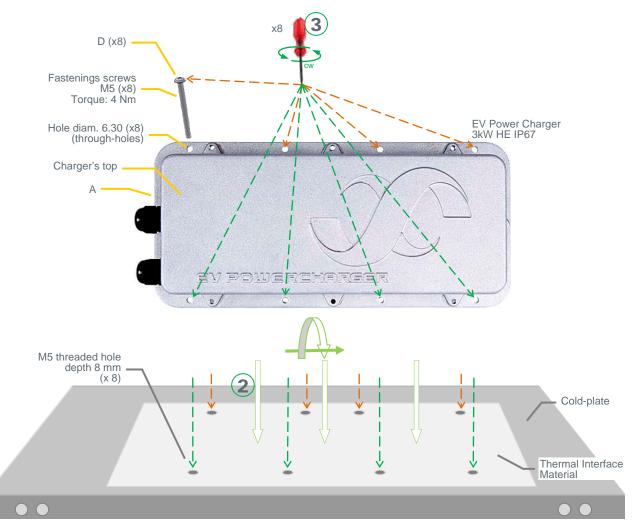
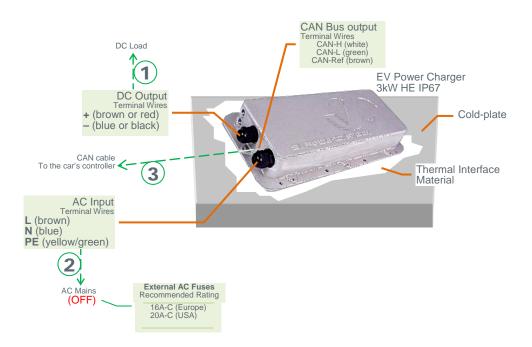


Figure 4 Fastening the EV Power Chargers 3kW HE, IP67 to the cold-plate

Charger Fastening Procedure — Steps	Action	Power is OFF!	OK
1. Clean the charger's surface underneath	•	Thoroughly clean the charger's surface underneath (aluminum outer wall) using rubbing alcohol (isopropyl alcohol) or pure acetone	
2. Position the charger on the cold-plate	•	Carefully position the charger's bottom (aluminum outer wall) against the cold-plate, so that the 8 screws (D) meet with the threaded holes on the cold-plate	
3. Fasten the screws (D)	•	Using the screwdriver, fasten the 8 M5 screws in the cold-plate's threaded holes (torque 4 Nm)	

NOTICE: The car manufacturer must carefully consider the need for **additional spring washers or glue to secure the screws**, in order to maintain a good contact between charger and cold plate/heat sink over time. Although long term vibration tests, performed on complete drive train inside a vehicle, have indicated that there should be no need for this, this may depend on the actual application.


Electrical Installation

All connections to the *EV Power Charger 3kW HE IP67* are implemented by connecting the AC input and DC output wires to the car's respective sockets. Also, connecting the CAN bus terminal wires to the car's controller.

NOTICE:

The car manufacturer must select suitable connectors, and assemble them at the end of the AC, DC and CAN bus terminal wires. The AC wires have no wire braid or screen (unshielded wires).

Connect the charger to the car, as follows:

Figuro 5	Connecting the EV	Power Charger	3KW HE	ID67
rigure J	Connecting the LV	i ower charger	JAV IIL,	11 07

Char	ger Connection Procedure — Steps	Action	Power is OFF!	OK
1.	Mount suitable connectors to the terminal wires	 Mount 3 suitable connectors to the end of the respective terminal wires for DC Output, AC Input and CAN bus output 		
2.	Connect the DC Output terminal wires	•	Plug the mounted DC Output connector into the car's correct "load" socket. (the "load" is the car's onboard DC high-voltage battery bank)	
3.	Connect the AC Input terminal wires	•	Plug the mounted AC Input connector into the car's correct "AC" socket (the "AC" socket will normally get current from a standard single phase AC outlet, 16A wall socket, external to the car)	
4.	Connect the CAN Bus terminal wires to the car's controller	•	Plug the mounted CAN bus connector to the car's controller CAN bus socket	

CAN Bus Communication

The *EV Power Chargers 3kW HE IP67* utilize the CAN^1 bus — a digital interface architecture that supports a dedicated communication channel between the car's controller, the battery charger and other CAN devices or nodes connected to the bus.

The *EV Power Chargers 3kW HE IP67* support CAN 2.0A/2.0B at the speed of 125, 250 and 500kbits/s, and implements CAN Bus signals: "CAN-L", "CAN-H" and "CAN-Ref".

The *EV Power Chargers 3kW HE IP67* are by default designed to be OFF, when connected to AC mains. To turn the chargers ON, they have to receive via the CAN bus a message containing voltage, current limit and power limit settings.

For prototype testing, *Eltek Valere* can provide a dedicated computer program for integration with the car electronics and the battery management system. Please, refer to the description of *Eltek Valere*'s CAN bus communication protocol, see chapter "Reference Documents" on page 10.

Firmware Upgrade of the Battery Charger

Please, contact your *Eltek Valere* Local Office if you need to upgrade the chargers' firmware, or if you need support with software integration.

¹ Control Area Network. Serial protocol utilised for communication between CAN devices

2. Technical Specifications

Specifications EV Power Chargers 3kW HE, IP67

AC Input			
Voltage	85-275 VAC (Nominal 230VAC)		
Frequency	45-65 Hz		
Current	14 A _{rms} maximum		
Power Factor	>0,99 at 50% load or more		

DC Output			
Voltage	See table below for adjustable voltage range **		
Current	See table below		
Charge control:	Controlled over CAN bus • Enable/Disable (On/Off) • Constant voltage • Current limit • Power limit • Available power (mains dependent)		
Dynamic voltage regulation	±5% for 10-90% or 90-10% load variation, regulation time < 100ms		
Ripple and Noise	< 250 mVrms		
Output Protection	 Output fuse Overvoltage shutdown Short circuit proof High temperature protection Under-voltage shutdown: 50V for *.010 & *.110 chargers, 110VDC 100V for *.020 & *.120 chargers, 220VDC 170V for *.030 & *.130 chargers, 360VDC 		

Efficiency	96% at 50% load, 95% at 100% load
Isolation	o 1.5 KVAC – input to earth
	 1.5 KVAC – output to earth
	 3.0 KVAC – input to output
Alarms/error	o Internal communication failure
messages:	 Control system communication
	timeout
	 High mains shutdown
	 Low mains shutdown
	 High temperature shutdown
	 Low temperature shutdown
	 Charger failure
	 DC voltage high (overvoltage
	shutdown)
	 DC voltage low
Warnings:	 Rectifier in power derate mode
Measurements:	Available on CAN bus:
	• AC voltage, current and frequency
	 DC voltage and current
	 Rectifier temperature (two
	measurements)
Operating temp	-40 to 60°C
Storage temp	-40 to +85°C (-40 to +185°F)
Cooling	Cold plate
Reliability	• MTBF > 162 000 hours, with 60°C
5	cold plate temperature
Humidity	o Operating: 5% to 95% RH non-
2	condensing
	 Storage: 0% to 99% RH non-
	condensing
Dimensions	o 60x355x167mm (IP67)
Weight	o 4.3 kg (IP67)

Applicable Stanc	Applicable Standards		
Electrical safety	IEC 61851-1 UL 2202 Compliant to IEC/UL 60950		
EMC	EN 61000-6-1 (immunity, light industry) EN 61000-6-2 (immunity, industry) EN 61000-6-3 (emission, light industry) EN 61000-6-4 (emission, industry)		
Mains Harmonics	EN 61000-3-2		
Environment	WDS 00.00EA-D11		

Specifications are subject to change without notice

241121.nnn.DS3 - v3(b)

				Ordering Information
Part no.	Description	Output Power	Output Voltage Range	Output Current
241121.110	EV Power Charger 110/3000 HE IP67 G2	3000W	70 – 122Vdc	25A
241121.120	EV Power Charger 220/3000 HE IP67 G2	3000W	150 – 250Vdc	16A
241121.130	EV Power Charger 360/3000 HE IP67 G2	3000W	250 – 420Vdc	10A
		** Please,	, refer to technical specificatio	ons for further details

Reference Documents

Doc no.	Description
2090185	Technical specification EV PC 360/3000 HE IP67
2090187	Technical specification EV PC 220/3000 HE IP67
2090189	Technical specification EV PC 110/3000 HE IP67
2086930	EV Power Charger CAN protocol description

www.eltekvalere.com